Specific Differential Entropy Rate Estimation for Continuous-Valued Time Series

نویسنده

  • David Darmon
چکیده

We introduce a method for quantifying the inherent unpredictability of a continuous-valued time series via an extension of the differential Shannon entropy rate. Our extension, the specific entropy rate, quantifies the amount of predictive uncertainty associated with a specific state, rather than averaged over all states. We relate the specific entropy rate to popular ‘complexity’ measures such as Approximate and Sample Entropies. We provide a data-driven approach for estimating the specific entropy rate of an observed time series. Finally, we consider three case studies of estimating specific entropy rate from synthetic and physiological data relevant to the analysis of heart rate variability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compression-based methods for nonparametric on-line prediction, regression, classification and density estimation of time series

Jorma Rissanen has discovered some deep connections between universal coding (or universal data compression) and mathematical statistics. In particular, the MDL principle has been one of the most powerful methods of modern mathematical statistics. In this paper we apply Rissanen’s approach and ideas to some statistical problems concerned with time series. We address the problem of nonparametric...

متن کامل

Applications of Universal Source Coding to Statistical Analysis of Time Series

We show how universal codes can be used for solving some of the most important statistical problems for time series. By definition, a universal code (or a universal lossless data compressor) can compress any sequence generated by a stationary and ergodic source asymptotically to the Shannon entropy, which, in turn, is the best achievable ratio for lossless data compressors. We consider finite-a...

متن کامل

N ov 2 00 7 Compression - based methods for nonparametric density estimation , on - line prediction , regression and classification for time series

We address the problem of nonparametric estimation of characteristics for stationary and ergodic time series. We consider finite-alphabet time series and real-valued ones and the following four problems: i) estimation of the (limiting) probability P (u0 . . . us) for every s and each sequence u0 · · · us of letters from the process alphabet (or estimation of the density p(x0, . . . , xs) for re...

متن کامل

Compression - based methods for nonparametric density estimation , prediction , regression and classification for time series

We address the problem of nonparametric estimation of characteristics for stationary and ergodic time series. We consider finite-alphabet time series and real-valued ones and the following four problems: i) estimation of the (limiting) probability P (u0 . . . us) for every s and each sequence u0 · · · us of letters from the process alphabet (or estimation of the density p(x0, . . . , xs) for re...

متن کامل

Applications of Kolmogorov Complexity and Universal Codes to Nonparametric Estimation of Characteristics of Time Series

We consider finite-alphabet and real-valued time series and the following four problems: i) estimation of the (limiting) probability P (x0 . . . xs) for every s and each sequence x0 · · ·xs of letters from the process alphabet (or estimation of the density p(x0, . . . , xs) for real-valued time series), ii) the so-called on-line prediction, where the conditional probability P (xt+1|x1x2 . . . x...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2016